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K Figure 1: Illustrating overlapping separable spaces X x Y, Y x Z, or

sets D, E, with their subutilities .5(x,y), c(y,z) and the associated

separable spaces, or sets, with their normalized subutilities.
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FACING AN UNCERTAIN FUTURE*

by

William M. Gorman

1. Introduction and motivation

Economists often assume that organizations use criteria of the form

T

(1.1) c E[f(yt)1
t=O

in deciding on their actions, where E(-) is an expectations operator.

If you like: that they seek to maximize the mathematical expectation of

a discounted utility stream. This is a special case of an additive

criterion

(1.2) fst (Ys) ,
s,t

where yst is a vector of flows which occur in period t if state s

obtains.

The convenience of assuming (1.1) or (1.2) is clear. Is either

justified: They require, after all, that utility is additive over time,

and over states, and that the same normalization does for each.

In many problems, all three of these results arise as the joint
* U

products of single argument. This is because addition is, effectively,

the only strictly increasing associative operation. Suppose for instance,

that

*This research was supported by the Office of Naval Research Grant

ONR-Noool4--C-o685 at the Center for Research on Organizational Efficiency,

Stanford University.
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Figure 2: The Social Welfare Function -Bentham & Bernouilli at a stroke.

Consumption Vectors: Yhs eYhs

STATES OF THE WORLD 1 2 ... x ..

HOUSEHOLDS extended vector 9

1 11  y12  ... Yls *..E

2 Y'21 Y22 Y'2s ..

h h1 Yh2 ... hs

... .. . . . . .. ..

extended vector ... z ..

space z1 2 ... s ..

Each space X h = 11 h is separable by consumer sovereignty.
sES

*Each space Zs= fl y is separable by the weak independence axiom.
~hs
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(1.3) f(w,x,y,z) = d(w, 6 (x,y),z) = e[w,x,s(y,z)] , -.

where all functions are continuous, and t in the subutilities, 6,

e. We then say that X x X , X x Z are both separable, where X is the

space of x,.... This is possible iff

(1.4) f(w,x,y,z) = g[w,a(x) + b(y) + c(z)]

where g(') is continuous and g(w,.)4. The secret is the overlap between

(x,y) and (y,z), or, better, between X x Y and Y x Z. To be able to

tear y out of its association with x in 6(x,y), and put it in with z

in E(y,z) instead, one effectively needs addition, or at least a strictly

increasing transformation g(w,.) of it.

What one wants to generate a criterion like (1.2) is a considerable

number of such overlaps.

Consider the following, related example. A society contains a

finite set H of self regarding households, h, and faces a finite set S

of possible states, s, of the world. h consumes Yh in state s and

is interested only in its own welfare

(1.5) a h(xh) ; xh = (Yhs)s = h's consumption vector

while society as a whole is only interested in the welfare of its members

as judged by themselves and wishes them all well. It is accordingly guided

by a t Social Welfare Function

(1.6) W = aah(xh)lh e H] = f(y hsh e H,s E S) , say(1.6)hs
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Figure 3: illustrating Al and A2

Time: 0 ... p- p p +1 p +2 p +3 ... T

Parity: 0(0).. 0(q) O(r) O(S) 0(t) O(u) .. (w)

etc
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2 r

yt
qS

or 24

b) 0 2 r, 0u3r, 0 4 q, etc.

c) x5 = (x r ~yr each O~r

d) z r = (xs SYS) sOr
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Society also satisfies Samuelson's weak independence axiom in the I

form

(1.7) f(xhs h H,s E S) b(aS (zs)Is E S) , b(.) ,

where all functions are assumed continuous. Both continuity and the very

strict monotonicity needed can be derived from the Debreu [1960] approach

followed by Gorman [1968], for instance.

In this case each Xh = sHYhs, and each Zs = h& hsis separable.
sES hs' hHlhs

Each pair XhZs actually overlap, in Yhs' so that it is not surprising

that (1.6) and (1.7), common assumptions in welfare economics and the

theory of choice under uncertainty respectively, jointly imply that we

can write

(1.8) W fhs(yhs)= a h(xh) = s
IEH hEH ses
seS

where

(1h9) h h(y 4

(=9 f (hs)sE;S

(1.10) 8S(zs) = [fhs(yh) ,

are the overall welfare, or utility of household h, and of society as a

whole in state s: Bentham and Bernouilli at a stroke - and with the same

normalization holding for each.

*
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Why not apply a similar analysis to time and uncertainty in the

case of an organization as to households and uncertainty here? Once one

assumes Samuelson's weak axiom for uncertainty in the form (1.6), one has

a considerable choice of assumptions about time to replace (1.5). One

can assume the exact analogue, that each period is separable from soci-

ety's point of view, or that the future from each period forward is, to

take two simple possibilities, either of which yields (1.7)-(1.9) with h

now standing for time.

'Unhappily, time and uncertainty are not orthogonal in this pleasant

manner. Instead, the world unfolds before us as we meander through time.

2 facin "Here I go to the other

extreme and assume that the world unfolds itself in a predetermined manner.

We do not know who will be elected President in November, but we do know S
2/

that someone will be.- This is the model I will explore.

Before proceeding further with this model may I discuss the argu-

ment whereby Samuelson, in particular, derived additivity over states.

He replaced his weak axiom (1.7) by a strong axiom which states that each

set of states of the world is separable, not just the individual states

themselves. The idea is, I suppose that once one knows that one will be

in some one of a particular set of states it would be absurd to allow one's

calculations to be affected by what one might have done, if in some quite

different state. This yields innumerable separable spaces, which overlap

most satisfactorily, and yield the required additively separable criterion

*(1.11) f~ s
sES

as is proven by Debrdu [1960].

. . . . . .
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The bother about that argument, as I see it, is that it assumes -

from the outset that we are all very bright, and especially so at compu-

tation. A similar approach involving time as well would be even more

demanding.

The approach I take in this paper is based on the contrary idea,

that we are pretty limited beings, only able to hold a few ideas in our

minds at a time, and accordingly unwilling to attempt difficult calcula- -u

tions until we really need to, and that organizations are collectively

quite as limited as their members. It is interesting that, in Britain

at least, it is the politicians, representing the biggest organization,

who take pride in not crosqing bridges until they come to them!

To be precise, I assume that we look ahead two periods in detail,

summarizing the impact of our choices on more distant prospects in a U

single figure - "capital," if you like. Should you believe organizations

to be more far-sighted, use a k-period rolling horizon, with k > 2. The

results will be much the same, though the end effects will last longer. 0

The other notion underlying this discussion is that, dull though

we are, we manage quite well. In particular, we do not spend much time

bewailing missed opportunities. If so, this may be another piece of •

stupidity - we do not realize we missed them I/ - or a piece of benign

sociobiological economy which saves us from wasting our limited mental

resources on lost causes. In this paper I explore another alternative:

that our tastes are adapted to our abilities, so that we can really satisfy

them quite well - to wit perfectly - by these limited procedures. Man

grew as a social animal and his ability to organize developed as he did,

so that I will use the same argument about organizations. I doubt myself



Figure 3: Illustrating Al and A2
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whether we do look ahead as clear-headedly in organizations as we do as

individuals - for one thing individual members may become politically com-

mitted to particular policies, and be unwilling to recognize unfavorable

developments. One reason why British politicians are unwilling to cross

bridges until they come to them is probably that they realize the danger

of precommitting themselves in public. Nevertheless, I will assume that

we are.

Of course, this is all rather dishonest. The motivating idea of

my analysis is the need to economize in computing. Yet computing costs

are nowhere to be seen in it. I claim that my assumptions are made more

realistic than Samuelson's; since they imply and are implied by virtually

h/
the same results, implicitly I assume pretty well what he does.-

Perhaps, I should repeat that, despite the absence of probabilities, S

this paper is about uncertain futures. One can introduce probabilities

into treatments of this type by, e.g., defining them as "the proportion

of equally likely alternatives" which are favourable to an event. Fre- 9

quently, they seem to me to obscure, rather than enlighten.

2. More about separability •

Consider the world as seen from an arbitrary initial point 0,

from which paths into the future radiate, as they do from r in Figure

3. I will deal with the set R of such nodes r, including 0 itself,

and assume a continuous preference ordering -. defined or the connected,

topologically separable,- / product space Y = JIY where y E Y
R rRiri r r

may bt thought of as the output vector of the organization at node r. IV
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I will assume that each sector Y is strictly essential: what

happens on it matters, whatever is happening off it.

I will call all this Assumption Al. It implies that the prefer-

ence ordering may be represented by a continuous criterion function

(2.1) f°(y

Consider YS = TY SC R. I hold production Y = S off Y
S rES r - % S Y5 2-5 Y

constant and define the conditional preference ordering (r/ slY"s) on YS

in the obvious manner. It can be represented by the continuous criterion

(2.2) fS(y sYXs) = 0(yS,Ys)

Iff this ordering is the same for each y SE Y S we say that Y. is

separable. In that case the condition YxS does not matter. Accordingly,

let us take an arbitrary vector in YR as basis, call it 0 by the simple
Hw

procedure of measuring YR as a deviation from it. Then

(2.3) f0 (y) gS(fS(y s),Ys) gS()cns , gS(°Ys) ,

44

(2.4) fS(ys): = f°(YS s) .

I will make copious use of this normalizing device in Section 3. V

Note the strict monotonicity of the higher order utility function, f 0(.),

in the lower, f S(.). This is always so, given Al, as is the continuity

of g S(.). I will use these facts continually in Section 3 as well.

W
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Figure 1: Illustrating overlapping separable spaces X x Y, Y x Z, or

sets. 0, E, with their subutilities S(x,y), c(y,z) and the associated

separable spaces, or sets, with their normalized subutilities.
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Given all this, (1.3) (1.4) is the basic theorem in this field.

It allows us to determine functions for which given collections of spaces,

Y = ]Y S C R, are separable.
S rESr'

For the present let us talk of the sets S C R as being separable,

rather than the corresponding spaces YS'

Look at Figure 1 opposite again.

(1.3) * (1.4) is equivalent to saying that, if D, E are separable

and overlap, then D \ E, D fl E, E \ D, D A E, and D U E are also separable.

In (1.3) the spaces corresponding to D and E are X x y and Y x Z,

and, to the other, X, Y, Z, X x Z and X x Y x Z in turn, with subutilities

a(x) + b(y), b(y) + c(z), a(x), b(y), c(z), a(x) + c(z), and a(x) + b(y) +

c(z) respectively. Call a collection A of subset S C R complete if it

contains R, the empty set 0, and, with overlapping D, E, the list assoc- V

iated with them above, and the completion A(B) of any collection B of

S C R, the intersection of all complete collections containing it. To

know that the elements of B are separable is to know that those of A(B) 0

are under Al.

As it happens, complete collections have a particularly simple

ordering under set inclusion "D". and the structure of the utility func-

tion mirrors it. This is discussed at length in Gorman [1968], continu-

ing Debreu 11960) and Leontief [1947]. All we need to know here is the

4 following: take a continuous function h(xlx 2 ,... ,xn) defined on

X x X x , x X. It can be put in the form
1 2 n'

n

(2.5) ) h (x
J=l
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by a continuous I transformation iff V. = 1 x is separable for each

j1i J

i=l,2,...,n. The corresponding subutilities are, of course, I hJ(x )

each i.

This is the result which I will bring to bear in Section 3. Before •

reading it, may I remind you of the tree, in Figure 3, which we will study

there, and the notation defined below it.

In particular, at node r: x is past output, y current output, UIr r

and z a vector of possible future outputs, along all the paths directedr

from r into the future.

Let me remind you that I will use normalizations such as (2.h) very

frequently, and that Al assures that all my functions will be continuous

in all their arguments and t in the "subutilities" among them, as in (2.3).

3. Main analysis

Look at Figure 3 again, opposite. It represents a particular type

of unfolding future. At a given node r, one does not know what is about U

to happen, but does know the possibilities facing one; and, looking forward

from r to some vr, one knows what questions will be answered at v,

should we ever reach it, though not what the answers will be.

Think of Figure 3 as representing the outward flow of blood from

the heart 0, if you like. Major arteries divide into smaller and yet

smaller ones, then into major capillaries, .... Think of the organization

as a corpuscle carried along in the blood stream. Having reached r it

does not know down which of the succeeding channels it will be carried, but

it does know that it will be one of those leading directly to an sor - W

I9



Figure 3: Illustrating Al and A2

Time: 0 ... p-i1 p p+ 1 p +2 p +3 ... T

Parity: 0(0).. e(q) e(r) O(s) 0(t) 0(u) ... 0 (v)

S yS

YS etc.

YS q.4

Part of the stream of time

2 r03r

4- XrYrzr

X zu

a) u~tosoroq

b) tf t 2r, 0 3 r, 0 4 q, etc.

c ) xs (x rJyr) each O~r

d) zr (x sly5  O~r
r



U

-17-

that is to a direct successor of r - and that it will reach that s in -O

the next period, if at all.

Now for some formal notation, spelled out under Figure 3. First

successors:

(3.1) tutr iff tT-i s , some s~r ,T 2,3,...

1 0
(3.2) to r iff tr , ro r

(3.3) tpr iff t 7r , some r = (0,1,2,...,T)

Next the period:

(3.4) 0(r) = p

in which r occurs if it ever does. If to r,

(3.5) e(t) = p + T

We choose

(3.6) 0(0) = 0 , so that 6(r) = p iff ro 0

Next output:

(3.7) X r ' Yr Zr

stand respectively for past, present, and potential future output vectors

at r. Hence



Figu re 23: illustrating Al and A2

Time: 0.. p- p p+l1 p +2 p +3 ... T

Parity: o(O).. o(q) o(r) o(s) 0(t) O(u) ... O(w)

Y...

YS etc.

Part of the stream of time

2 3

* -X y zr
r - X r, z

S ~ S

4- ~ t'

X y z

a) u~tos~roq

2 3 4

C) xS (xr 9yr each W~

d) z r (x $SYS) O4r



-19-

(3.8) xs  (xyr ) , each s~r ,

(3.9) z (ys'z
r s s~r

May I now remind you that the aim of this analysis is to derive

the common form

(3.10) fr(xrzYr ) = ' rV(y)

vbr

of the criterion function at r,

(3.11) each r E R = 0 = {rlro} ?

Remarks

i) Note the assumption, implicit in the form fr(xr,Yr,Z), that,

given that it has reached r, it does not matter what the organization

might have chosen, had the world evolved differently. The form I aV(y),

v~r
on the right-hand side, implies that the actual behaviour in the past, xr,

does not matter either. While this may be less repugnant for organizations

than individuals, one would not like to assume it from the outset. Hence, S

the x in fr(x ,y ,z
r r r5 r

ii) Note, too, that we do not have columns, representing states of the

world, overlapping rows, representing time periods, in the way which

yielded additive separability in a related problem in Section 2. If over-

laps are needed for additive separability, they will have to be introduced

4 explicitly, as in the assumption, A3 below, about the existence of a two-

period rolling horizon. This assumption does not give the necessary
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Figure 3: Illustrating Al and A2
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overlaps at the very beginning and very end of the organization's life -

so that we never quite get (3.10). Very similar results, with longer-

lived end-effects, can be found with a k-period rolling horizon when

k>2. U

If you think of T as at all large, and the distant future as not

being of critical importance, these end effects scarcely matter. In any

case, I will assume

(3.12) T > 3

as a minimum. Include it in Al. In addition, to Al, and the rolling

horizon A3 just mentioned, I will need

A2 Assumption 2: Very weak independence assumption

(3.13) fr(xyZ) = gr(xy; f (Xsyszs)jsqr)

(3.1h) = gr (x s,fs (x s,ys ,zs)Isor) ,

where

(3.15) g r(xr ,Yr,") is

Remarks* V

i) (xr, r) = Xs  is repeated in (3.14) for each s~r, so that gr(.)

is not strictly the same there as in (3.13), nor even uniquely specified.

The values are the same, and the notation is convenient.

I9

* V.-
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Figure 3: Illustrating Al and A2
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ii) I use ''sr' instead of '()s' where it seems simpler. Its -.

domain extends back to the previous ' if there is one. In either case

'.' is taken for each s4r. I have dropped the quantifier to preserve

the analogy with the normal notation.

iii) Why: very weak independence axiom?

Samuelson's weak axiom may be written in the form

S[ S

(3.16) f(z) = g(f5 (ys)Is E S) , say g(.);

all functions being continuous. It ignores both past and present output,

X, y at the point of consideration r. (3.13) seems weak since

(xrYr) = x., appears through each of the future criteria fS(xsYszs),s~r,

and also as an additional argument in g (.). g

Next to show that A2 implies consistency over time in an obvious

sense.-/

Remember that I warned you in Section 2 that I would make copious

use of normalizations based on the arbitrary reference vector.

4 (3.17) Y = (Yr)reR = 0

without loss of generality. In particular, I will set

(3.18) fr(o) = 0 , Vr e R,

again without loss of generality.

Note now that
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Figure 3: Illustrating Al and A2
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(3.19) f(xr,yZr ) = fr(xs,Ys ZS; (y0 ,z)aocr,o f s) , each s~r

and define

(3.20) fS(x ,YsZs) : fr(xYs  zs ," (0)114r.o s)

(3.21) fr(x y ,z; X x y X Z )sss sS 1s

(3.22) = gr(xs'fS(x sys z s); f (xs'0,0)lo¢r, # s)

-S.

Remarks

i) Since gr is in fs given x in (3.22), and x is already

past history at s, f~s(.) is just as good a criterion at s as is fs(.).
.5

ii) Clearly (3.20)-(3.22) are calculated by ignoring irrelevant infor-

mation--or, more precisely, setting it at its reference level 0. This

is done explicitly in (3.20), and implicitly in (3.21) which lists the

relevant space Xs x Y X Zs, where information should not be written

over in this manner. It is sometimes convenient to write

(3.23) frxyz ; X5 x y X Z ) r(x ,y ,Z(323 fxs Y's ; s s s s s

where the ellipsis is understood. This exploits the symmetry about ';'

in fr (,;) while the bar in fr(xsYss~z) reminds one that it is not

merely a matter of replacing (X ,y rzr) in fr(x ,yr zr) by (x ,yszs)

which would imply an infinite time horizon, a great deal of extra structure,

and essentially constant 'tastes' in the organization.

W
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Figure 3: Illustrating Al and A2
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iv) One must imagine the normalization carried out with r = 0 first,

then with the r's with 8(r) = 1,2,...,T-1 in turn.

v) Having done so we find

S
(3.24) fr(xryrZ) gr(x ,fs (xs ,ys zs )Isr)

(3.25) = hr(xtft(xtytZt ) t 2 r)

(3.26) = kr(xuqfU(xuyuz ud u ¢ r) =

say, from (3.14), and

(3.27) fS(x ,ysz) fr(xs,Ys,zs; X × Y × Z ) = r(x ,ysZs) Vsr
S 9S S

(3.28) = zxZ; X x y x Z ) = q x yz) ' Vsx 2 q

(3.29) = f 0 (x ,ysZs; X x y X Z) = T (xsyszs) Vs E R

from (3.20) and (3.23).

Remarks

Because of Al we were able to choose f 0(.) to be continuous.

So therefore is each fr(.). Because Y is strictly essential, each
rERr

r E R:

(3.30) The functions in (3.2h)-(3.29) are continuous; and f in their

functional arguments.

U' "
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Time: 0 ... p.- p p +1 p +2 + 3 ... T

Parity: 0(0).. o(q) e(r) O(s) 0(t) O(u) ... ONw)
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0s

yS
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YS q S

+X)Zt-qw

Part~ ~ ~ ~ ofth tramo tm

c) x9 =S (xzt) eah

d) zr (x5 ,y5  s~r
r6
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I now turn to my main assumption

A3 Assumption 3: Two period rolling horizon

(3.31) fr(xr ' Zr) = c r((x t'Yt)t2 r'Yr(zt ito2 r ))

which states that the organization looks into the next two periods in detail,

rbut summarizes what may happen thereafter in the single number y .

Since each period is strictly essential, Al implies that we can

normalize to get

(3.32) yr(zto2 ) = fr((z) tr Z
t r to r

and

(3.33) cr(.) continuous , r )Ux ) 2'

So far I have paid no attention to possible end effects. From now

on I will have to take them seriously. Let

(3.34) O(R) = {e(r)Ir E R) = (0,1,2,...,T)

as in Figure 4. When

(3.35) O(r) > T - 2

(3.36) 11 Z is null,
to2r t

so that arguments based on A3 are empty. Hence, the need for care.
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Figure 4: Illustrating A3

Time: 0 ... p - I p p + I p + 2  p + 3 ... T

Parity: e().. o(q) 0(r) 0(s) o(t) O(u ... 0(w)

sYt

YS________ etc.

YSqr

Yq

,,oPar of the str-eam of ti,o e'i

Cr r 3r

4- X r Yr ' Zr -- z t )4 2r

--xt') Yt'- zt "--

a) u~t~s~roq 

XuYl

b) o 2 r, & 3 r, 0 4 q, etc.

(:) xs = (xryr each O~r

d) zr  ), ( q s Or p=

L!

I
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Al-3 imply that we may take the future as separable at all nodes

u such that

(3.37) 6(u) > 3

and that this implies that we can write the criterion at u as

(3.38) fU(yu,zu ) when 0(u) > 2

in an appropriate normalization.

Since T > 3, there is an r such that

(3.39) uO 3r

and

(340) fU(xyz fr(xu,Yu ,Z; X x Y z) , by (3.27)(3u0 u (uu'u) = X u u

( cr(x, yr(yu,zu; Yu x Zu); X

where cr(.) is continuous and cr(xu,' t . Hence,

(3.42) ?U(yu,Zu ) := Yr(yu,zu; Y x Z ) u43r

is a perfectly good criterion at u, when 6(u) > 3. W
It is easily verified that the r satisfy (3.13), (3.27) and

(3.31) when e(r) > 3, so that we can drop the tildes, and get

wI

V
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FIGURE 5

1 3 5 7

sets

Y 1 Y 2 Y 3 Y 4

spaces
Z1  Z2  z3  Z 4

Figure 5: Illustrating (2.5) & (3.44-5)

Given that Wt = X t x Yt is separable, each t, i.e. that each of the

sets A1 = {1,2}, A2 = {3,4}, A3 = {5,6}, A4 = {7,8} is separable,

and that Z = nZt  is separable, i.e. that each of the sets B = (2,4,6,8)
t

in h(yt,Ztlt = 1,2,3,4),

I will show that the complementary spaces

RI = T Yt x I Zt; S1  f Yt x T Ztt-2 t=l t=l t=2

* of Yl and ZI respectively are separable. Since the ordering (1,2,3,4)

is immaterial this will show that the complement of each cell above is

separable and hence h = lat(yt) + jBt(zt), say, in an appropriate

* normalization.

Proof: in terms of sets Rl((B U A2) U A3 ) U A4

S((B U A,) U A2) U A3 ) U A4

!p
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(3.25)* fr(xrYr,zr) = hr(xt,ft(yt,zt)It¢2r)

(3.31)* = cr((xt,Yt)t 2 r,Yr(zIt2 r))

in particular, when

(3.43) 1 < 6(r) T-3 ,

the functions being continuous; and in their functional arguments.

Hence,

(3.44) 11 ; and Y x Zt each t¢2 r
t02r t 

t

are separable in fr(.), given (3.43), so that

(3.45) fr (x rYr ,Z) = Jr((x t)t2 1 (2t(Y t ) + 6t(zt))) , say
to r to2r

where

(3.46) jr(.) continuous r((,t)
to 2'r

(3.47) 1 < O(r) < T- 3

by the argument sketched in and below Figure 5 opposite.

Clearly we can normalize to get

(3.48) ta (0) = t (0) = 0
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FIGURE 5

11 3 5_ 7
sets - _____-

2 4 6 8

Yl Y2 Y Y4

spaces
Z I Z 2  Z 3  Z 4

Figure.5: Illustrating (2.5)-A (3.44-5)

Given that Wt = xt x Yt is separable, each t, i.e. that each of the

sets A1 = {1,21, A2 = {3,41, A3 
= {5,6}, A4 = {7,8} is separable,

and that Z = TIZ is separable, i.e. that each of the sets B = (2,4,6,8)
tt

in h(yt,ZtIt = 1,2,3,4),

I will show that the complementary spaces

R1 = lYt x n Z; Sl = Yt x lZ t
t-2 t=I t=l t=2

of Y1 and Z1  respectively are separable. Since the ordering (1,2,3,4)

is immaterial this will show that the complement of each cell above is

separable and hence h = Xat(yt) + X5t(zt) , say, in an appropriate

normalization.

Proof: in terms of sets R1 ,((B U A2 ) U A3 ) U A4

SI(((B U A,) U A2) U A3 ) U A4
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and therefore -

(3.49) ft(ytz) = fr(yt,zt; Y x z) = jr(; t(y + t(z))

r tt t 2 t

k r(%t (Yt ) + t (zt)); t 2r , 3 < O(t) < T - 1

where kr(.) is continuous and I. Hence,

(3.50) t(ytz t ) 
= £r(ft(yt,zt)) = a t(yt) + 0t(zt)

is a perfectly good alternative criterion at t, where

(3.51) Ir(kr(e)) = e , 1 < e(r) < T - 3

and

(3.52) 3 < e(t) < T -1

The next step towards (3.10) is to show that, in a trivial

renormalization,

(3.53) 0S(z) = (at(Yt ) + at(zt)) , 3 < 0(s) < T - 2

Assume for the moment that (3.53) holds. Then

(3.54) S(ys,z s ) = S(ys ) + a
5(Z) ,

= aS(ys) + x (at(yt) + st(zt)) =
t 4s t

t4csat(Y t ) + t(z t )

t~s t~s

e(t)<T-1 e(t)=T-i
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Figujre 4 : illustrating A3

Time: 0 ... - p p +1 p +2 p +3 .. T

Parity: 0(0).. e(q) o(r) O(s) 0(t) O(N ... OMw

etc

Yqt

YS ff = etc

Part of the stream of time

2 rf 33

a) u 1t YsS z

b) 0 2  3r, 0r u 4 q, etc. 9

c) xS (x ,lyr) each O~r

d) z r (x5 ly5) O~r
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when

(3.55) O(s) > 3

The proof of (3.53) is illustrated in Figure 4 opposite, where S

(3.56) tosoroq

to yield

(3.57) kq(s(zs )) fs( 'z s ) fr(zs ; Z s) = kr( I (0t(yt) + 8t(zt)))

t s

(35)r ( S(z • fr( r 1 Z s) = k r( t (m(yt) + st(z t))

s s =  ssr' sor s 2 r

where

(3.59) 1 < 0(q) < T -4

Define now

(3.60) mr(E) = r(kq()) , 2 < 6(r) < T - 3

to get

(3.61) mr( I 8S(z)) = (a(yt) + Bt(zt))
sor to2 t

(3.62) = (at(yt) + 8t(zt)),
sor tos

Sm r(Bs(zs)) , 2 < 0(r) < T - 3
sor

s-- - - -
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Figure 4: Illustrating A3

Time: 0.. p- I p p +1 p +2 p +3 ... T

Parity: 0(O).. O(q) o(r) o(s) 0(t) 9(u) ... O(w)

uI

etc

SS

U Yt

* S

0Z r

SS qSrp

X b), tOsr uzr uS ec

C) xS (x r$Yr) eaci O~r

d) Z r =(x S 3Y)s sor
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Since mr() is cns and I this implies

r
(3.63) m (e) = a C , say, a constant, 2 < 0(r) < T - 3

r r - -

so that

(3.64) arBS(zs) = I (at(Y t ) + r(,t)) , 3 < (s) < T - 2
tes

when we set y = z = 0, v$ 2r, v4s, in (3.56).v v

Now introduce a set of positive constants bt, one for each node

W,
with 3 < 0(t) < T - 1 such that

(3.65) arbt = bs , ts~r

as we clearly can, and define

(3.66) at(yt ) = btat(yt ) , (zt ) = btat(zt ) 3 < 6(t) < T - I

and hence

(3.67) r(zr) = zs(ys ) + qS(z)) 3 < 6(r) < T - 2

Drop the tildes to get (3.53) and (3.54).

Corollary 1

In this normalization, when O(r) > 3,

6 5

' , 1 m b i - • n un ' - - - In " - m " m ...
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Figure 6.: Illustrating (3.71)

Time: 0.. p- I p p+ I p +2 p+ 3 ... T

Parity: e(0).. .o(q) 0(r) O~s) O(t) 9(u) 0. e(w)

YS etc.

SO

rs y

X~~~ ~ ~ r r ( t2

a) u~tosoroq

b)t 2 r,03 r,04qec

C) xS = (xry) each sOr

Zr ~(s S



(3.68) f r r a(y + (z)
r rr a r r

(3.69) ((r + , + .8(z
r s Ss~r s~r

(3.70) = ... , = a &V(y) + 8zv
vor vore(v)<T-1 e(v)=T-I

(3.71) a(y ) + 6v((yw)wr) '

vir vir
(v)<T-i (v)=T-1.1

(3.68)-(3.70) are trivial. To get (3.71) we note that the criterion

function at a terminal point w, with e(w) = T, may be defined by

(3.72) f(yw) :f(y; Yw) =V(Yw; Yw)  , wv

=: €(yw)

implying (3.71) by (3.24) and (3.31) where

(3.73) 6v(C) = gV(O,)

In a sense (3.73) advances the terminal point for (3.70) by one

more hesitant step. One can push back the opening value, 6(r), from 3

to 2 to get

(37) fr(xYZ) r(x ,y) + 8r(zr) , say , e(r) = 2
r'rr r r r

where

- m & ' °=iw"
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Figure. 4: Illustrating A3

Time: 0 ... p- I p p +Ii p +2 p + 3 ... T

Parity: 0(0).. e(q) e(r) O(s) 0(t) O?(u) ... O(W)

YS etc.

YS q-4.

Part of the stream of time

* 4-- XSYl r( 42

*-xt, yt2 Z~ -+

a) u~t~s~rqq

b) tO r, 0 3 r, 0u4 q, etc.

c) xS = (x ryr) each O~r

d) z r = (x5svs O~r
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(3.75) e (zr) = (y s + BS(Z)) ,s~r

now for 0(r) = 2, as well as 3 < 6(r) < T - 2 as in (3.67). I will

not spell out the argument here. It is similar to that given above, and

just as clumsy.

I suspect that such arguments are unnecessary, and that the results

in this section can be derived directly from Theorem 1 in Gorman [1968]. 1i

I hope to have a shot at this later.--/

4. Additivity over streams

Tastes are learned from experience; organizations presumably

"learn by doing" and may "improve" their criteria in consequence. Separ-

ability over time is doubtfully desirable. A

What about additivity over streams, identified by their terminal

nodes w, such that

(4.1) O(w) = T ?

First, consider a timeless model. By tomorrow we will know in

which of 2k > 4 states we are in. For the usual reasons, the weak

independence axiom

(4.2) f(z) = g(fl(y ),f2 (y2 ) ...,f2 k(Y2k)), g(.) continuous and

is acceptable. Now suppose that 1,2,...,2k is a natural order - say

by the rate of inflation, or the % of Democrats in the House. Assume

that one will know ahead of time in which particular "broad set"

J m %
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Figure 2: illustrating Al and A?

Time: 0 ... p- I p p+lI p +2 p +3 ... T

Parity: o(). (q) e(r) O~s) 0(t) O(u) O. (w)

YS etc.

-v4

Part of the stream of time

4-- ~ ~ ~ X--94r

XS ySs

a) uotosoroq

b) tO 2r, uQ r, uO 4q, etc..

C) x5 = (x lyri each sOr

d ) Zr = (x5 ,qy5 sOr
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(4.3) S = {l,2,...,k},S = (2,3,...,k + 1},...,S {k + l,k + 2,...,2k} 
1 k 2

the world will be in. These are the bridges, one of which the organization

will soon be called upon to cross. Perhaps it is reasonable to assume each

separable. Call this broad separability. Then

(4.4) f(z) = hj (v ' j kj (v )) , each hi(') continuous, hJ(v ,' " )

where v. = (yj yJ+l" ... YJ+k-1), vj its complement.

Call the complement of i

(4.5) -vi + 112..i ~ ,...,2k},

and take i < k without loss of generality. When i = 1,

(4.6) 'l : .. (S2 U S ) U S).. U Sk+

When 1 < i < k,|3

(4.7) "i = (...((s1ASi) Si+l u si+ 2 ...)U Sk

Each nui is therefore separable and (4.4) yields

2k
(4.8) f(z) = i

1=1

in an appropriate normalization.

A similar treatment yields the same result when there are

2k- > 3 states.

I
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Figure 3: Illustrating Al and A2

Time: 0 ... p- p p + 1 p +2 p +3 ... T

Parity: 0(0).. O(q) e(r) 6(s) 0(t) ONu ... O(w)

etc

SS

2 r

SS qS S

t t
Sq

22 33

c)~~~~~ r~=(r'r'ec ~

d)~ Zr r x y) ~

s
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Note that (4.2) is a result, not an assumption, in this case.

Can one get (4.8), or something like it when the world reveals

itself as in Figure 3 opposite?

One can, but only by applying broad separability, based on rough

foresight, at least two periods ahead - rather as in A3. In fact, the

simplest assumptions which suggest themselves are Al, A2 and

A3* Assumption 3*: Broad separability within a two period rolling plan

(4.9) f r(X r'Yrz) = d S((xt) 2 Z (YtZt)teS 6 
S(Xtyt'z tit E S))

r r rt$ r

2say, for each of the broad sets S of to r defined as in (4.3), FvS

being its complement with respect to the set of t 2r. Given Al, this

immediately yields

(4.10) f r(Xry ,z) ar((xt) 2 t(xt,yt,zt)) , say
rr r to rs 2

tr r

where

r(4.11) ar((xt)t 2r'

and we can normalize to get

4 (4.12) ct(xt,0,0) = , when O(t) > 2,

by absorbing any such term into the blanket (xt) 2 argument in ar(_).

Do so. U

L



Figure 3: illustrating Al arnd A24Time: 0 ... p- I p p +1 p +2 p +3 ... T

Parity: 0(0).. o(q) 0(r) o~s) 0(t) e(u) ... e(w)

s Yt

y etc.

2 3

4 Xr9 Yrs Zr

4 X, ss Y z -

4Xt Yt9

a) uotos~roq

b f2r, uO r, 0 4 q, etc..

c) x5  (xr r each sor

d) zr= (x5 ,y5  s~r
r
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Normalize the fr(.) to satisfy (3.27-9) as in Section 3. (4.9)

then yields

(4.13) f t(xtytz t  fr(xtYtZt; Xt x Yt x Z) tr ,

(4.14) = ct(xt,at(xt,Yt,Zt)) say 2t2 r

(15) f (x fr(xs ,yz; X x Y xZs) say s~r

(4.16) b b (x5,y, a t(xtyt,Zt)) , say , s~r
tos

where

r((xt) 2S(x(4.17) ar 2 '  ' b (sYs,') C t(xt ,' )

t4 r 

when

(4.18) e(r) > 0 e(s) > 1 , e(t) > 2

Clearly

0 (4.19) t(xtYtZ t )

is a perfectly good criterion at t when

(4.20) e(t) > 2

I will now prove

6 
P

Theorem

In a simple renormalization

L
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Figure 3: Illustrating Al and A2

KTime: 0 ... p-i1 p p +1 p +2 p +3 *. T

Parity: e(0).. e(q) e(r) S(s) 0(t) e(u) ... O(w)

ett

0 rr

yyt

2 3

rrr

d) Zr Y= (xy) s

Ut yt
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r~ So .t

(4.21) r z a x r t'-

= X*cx(xwywZw) when 6(r) > 2

w-or

where is taken over terminal nodes w, as foreshadowed in (4.1).

Remarks U0

This is virtually what I set out to get. Once again, there is an

end - or rather initial - effect. (4.21) does not apply when 0(r) 0

or 1. In these cases we have

(4.22) f0(yoZ 0 aO(( t0*a(

(4.23) fr (xrYr r ) 
= br(xr,Y *W(xwy,zw)) when 6(r) 1

by (4.10) and (4.16) respectively. S

Proof

The argument is similar to that in Section 3. Once again we set

out to derive a linear relationship via the linearity equation

f(jx i ) = jf(xi).

First solve (4,14) for at  and substitute s for t in the
V

result to get

(4.24) a S(x ,Ysz) = iS(x s,f S(x ,YsZs)) , say , iS(xs ,.) ,

(4.25) = 3S(xsys, I at(xt,yt,zt)) , say , js(xsys,)

tos

- - . .. . . . ... . . . . . . .. . . - - m h • . . . •
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.2ue3: Illustrating Al and A2

Time: 0 ... p- I p p +l p + 2  p + 3 *.

Parity: e(). (q) O(r) O(S) 0(t) O(u) ... O(W)

YS etc.

Part of the stream of time

I
EL~~~ X $ r

U U U

a) uotos~rqq

b) tO 2r, uO3r,0 4q, etc..

C) xs = (xr~yr) each O~r

d) z r = (x5 ,ly5 sor
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by (4.16). Then solve (4.16) for t(xtytzt) and substitute s

for t and r for s in the result to get

(4.26) ras(x s~ys~zs kr(xyrfr(,yz)) say Ikr(xr gyrI') '

(4.27) = tr((x t2r,  a (xtytz)) , say
qt¢2r 13

(xt)t ,2 r ,

when Ve

(4.28) O(s) > 2 , 6(r) > 1 respectively

Hence,

(4.29) jS(xxy, tt (x = r s,Y a t (xt,Ytzt))
sor t(s to2 r

Notice the linearity equation beginning to emerge. Take now sor

and set

(4.30) Yt = zt = 0 , o t2r , os,

to get

(4 ) S(x sY s  a t(xtytZ)) = r((xYs) at(xYZ))

toS ts

by (4.12) and (4.25), so that



Figure 3: 1Iustrating Al and A2

Time: 0 ... p-i1 p p+l1 p +2 p +3 .. T

CParity: 0(0).. e(q) 0(r) O(s) 0(t) 0(u) ... e(w)

etc
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b)t*r u r uY, etc.

c) x5 Y= (Xz) eah
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(4.32) SXsYsE) = 2r((x sY)sr,E) = mr(x ) , say ,

where, of course,

(4.33) (xry r ) = xs  , each sr. I

(4.29) therefore becomes

(4.34) mr(xr,y r ,es ) mr(xY . s ) , when o(r) > 1 ,

sor sor

where

(4.35) es = X at(xtYt'z t)
t~s

Since mr(x rr.) t this implies
r

(4.36) m r(xryrE) = er (xyr)E I say er > 0.

and hence,

(4.37) c (xYsz) j( Xsy s , at(xytz)) , by (4.25)

ts

* 0

(4.38) mr(xryr, I at(xtyt,zt)) , by (4.32)
t~s

•(4.39) e er(x r,Yr ) I. at (xt,YtZt) •

t~s

Now, choose multipliers

* S

6 S
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figure I.: Illustrating Al arnd A2

Time: 0 ... p- 1 p p+ I p +2 p +3 ... T

Parity: B(O).. O(q) O(r) 6(s) 0(t) O(u) ... e(w)

YS etc.

0- r

2 3

or qr

orr fr Zrr0

6.xt, Yt9 zt

a) u~t~s~r~q

b) to2 r, 0u3 r, uO 4q, etc.,
c) x5  (x ,sy ) each sOr-

r r~s o
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(4.4o) r(xrY r ) > 0 , each r such that 6(r) < T - 2 ,

with X 0 (yO ) = 1, such that

(4.1) xS(xy) = es(xs,ys)Xr(xr,Yr) , each s~r

and define

(4.42) at(xt,Yt,Zt) r(xrYr)at(xt,Yt,zt ) , each t02r ,

to get

(4.3) a ,YsZ) = &t(xt,yt,Zt) , 2 < e(s) < T - 1

t~ls

The construction is clearly simple in a model such as that depicted'

in Figure 2 opposite, that is, given Al. Moreover, (xrY r ) is past history

at t, so that a (xt ytzt) is just as good a criterion there as is

Cr(xtYtZt). We may, therefore, drop the tildes in (4.43) and replace s

by r to get the first equation in (4.21). The others follow trivially.

We have proved the Theorem.
o@

Remarks

"Proved" is a big word. To justify it I would have to discuss the

range of the e's in (4.34). That might be tricky. I do not think it

would affect the result.

V

U
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Figure 3: Illustrating Al and A2

Time: 0 ... p- I p p +l p + 2 p +3 .. T

Parity: e(0).. o(q) e(r) O(s) 0(t) O(u) ... e(w)

YS etc.

Part of the stream of time

or2 r3r

4xt, Yt9 Zt

a) uotosoroq

6b) t 2 r, u 3 r. u 4 q, etc..

C) x5 = (xr r each s'or

di) zr = (x ,Y5  sor
r s s
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Footnotes

Earlier versions of this paper were read in Johns Hopkins, Stanford,
and the University of California at Berkeley in the Spring of 1980,
and a later version at the London School of Economics in 1981. I am
grateful to the auditors for their comments, particularly to Peter Ig
Hammond for his suggestion that assumption A2 should be called "con-
sistency over time." I had discussed the apparent coincidence that
the same normalization should do for time and uncertainty with Kenneth
Arrow, Michael Boskin, Frank Hahn, Hugh Rose, Amartya Sen, and John
Wise at various times, and the possible relationship between the
structure of a criterion function and an information tree such as
that depicted in Figure 3 with Bernt Stigum in 1967. I thank them
all, especially Bernt Stigum, and Michael Boskin who pointed out
the importance of A3 at the London School of Economics.

1/ +: monotonically increasing: f(y) > f(x) if y > x ,

:

t: strictly increasing: f(y) > f(x) if y > x

$:very strictly increasing: f(y) > f(x) if y > x.•

Here x is a vector. If a scalar, I and t coincide. I will
sometimes write "cns" for "continuous."

2/ We need to know the potential candidates, too, ahead of time. The
path we follow from November depends on what happens at that
election.

3/ Often it is the ablest students who believe they did badly in an
examination, because they realize what they failed to mention.

_/ Note quite true: Samuelson introduces probabilities; I cover time
as well as uncertainty and have annoying end effects.

5/ "Topologically separable": a completely different concept from
"separable" as it is used in this paper. It means that the space
contains a countably dense subset - such as the rationals among
the reals - which can be used in arguments from continuity.

I
6/ When I read an earlier version of this paper in Stanford in May

1980, Peter Hammond suggested that A2 should be called the consis-
tency axiom and a case can certainly be made for that. It certainly
implies (3.27) which I had listed as a separate assumption.

* / Actually, the results can be strengthened for 6(r) < 2.

A
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